† co-first authors
* corresponding author

 

30. Opportunities in Main Group Molecular Electronics.

Hight, M. O.; Su, T. A.* Trends. Chem. 2024, in press.
• Invited review article for ‘Emerging Leaders in Chemistry’ issue.

 

29. Editorial on Molecular Scale Electronics.

Su, T. A.*; Inkpen, M. S.*; Li, H.*
J. Mat. Chem. C., 2024, in press.
• Guest editorial for themed collection on molecular scale electronics.

 

28. Intramolecular London Dispersion Interactions in Single-Molecule Junctions.

Hight, M. O.; Wong, J. Y.; Pimentel, A. E.; Su, T. A.*
J. Am. Chem. Soc. 2024, 146, 4716-4726. First posted on ChemRXiv.

 

27. Installing Quaternary Germanium Centers in Sila-Diamondoid Cores via Skeletal Isomerization.

Aguirre Cardenas, M. I.; Siu, T. C.; Pimentel, A. E.; Hight, M. O.; Shimono, M. G.; Thai, S.; Carta, V.; Su, T. A.*
J. Am. Chem. Soc. 2023, 145, 20588-20594. First posted on ChemRXiv.
• Featured in
JACS Spotlights.

 

26. Site-Selective Functionalization of Sila-Adamantane and Its Ensuing Optical Effects.

Siu, T. C.; Aguirre Cardenas, M. I.; Seo, J.; Boctor, K.; Shimono, M. G.; Tran, I. T.; Carta, V.; Su, T.A.*
Angew. Chem. Int. Ed. 2022, 61, e202206877.
• Selected as a “Hot Paper” by the Editors

 

25. Oxidation State-Specific Fluorescent Copper Sensors Reveal Oncogene-Driven Redox Changes that Regulate Labile Copper(II) Pools.

Pezacki, A. T.; Matier, C. D.; Gu, X.; Kummelstedt, E.; Bond, S. E.; Torrente, L.; Jordan-Sciutto, K. L.; DeNicola, G. M.; Su, T. A.;* Brady, D. C.;* Chang, C. J.*
Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2202736119.

 

24. π-Conjugated Organosilanes at the Nexus of Single-Molecule Electronics and Imaging.

Pham, L. D.; Nguyen, N. Q.; Hight, M. O.; Su, T. A.*
J. Mater. Chem. C 2021, 9, 11605-11618.
• Invited Perspective for 2021 Emerging Investigators Issue.

This article explores how σ–π orbital interactions in molecular organosilane materials manifest in emerging single-molecule technologies.

This article explores how σ–π orbital interactions in molecular organosilane materials manifest in emerging single-molecule technologies.

 

23. Single-Cluster Electronics.

Siu, T. C.; Wong, J. Y.; Hight, M. O.; Su, T. A.*
Phys. Chem. Chem. Phys. 2021, 23, 9643–9659.
• Invited Perspective

This article explores how the structure and bonding of inorganic cluster compounds give rise to desirable quantum transport effects.

This article explores how the structure and bonding of inorganic cluster compounds give rise to desirable quantum transport effects.

 

22. Chemical Anthropomorphism: Acting Out General Chemistry Concepts in Social Media Videos Facilitates Student-Centered Learning and Public Engagement.

Hight, M. O.; Nguyen, N. Q.; Su, T. A.*
J. Chem. Educ. 2021, 98, 1283–1289. First posted on ChemRXiv.
• Activity featured in
Massive Science
• Videos from this activity have received over
2.8 million views

This article describes how TikTok videos can be harnessed as a vehicle for chemical education and outreach.

This article describes how TikTok videos can be harnessed as a vehicle for chemical education and outreach.

 

21. Conductivity in Porous 2D Materials Made Crystal Clear.

Siu, T. C.; Su, T. A.*
ACS Cent. Sci. 2020, 11, 9–11.

This First Reactions commentary contextualizes the significance of conductive single-crystal MOF devices made by Dincă and coworkers.

This First Reactions commentary contextualizes the significance of conductive single-crystal MOF devices made by Dincă and coworkers.


Prior to UCR:

20. Permethylation Introduces Destructive Quantum Interference in Saturated Silanes.

Garner, M. H.; Li, H.; Neupane, M.; Zou, Q.; Liu, T.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Ng, F.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G.
J. Am. Chem. Soc. 2019, 14139, 15471–76.

 

19. Caged Luciferins for Bioluminescent Activity-Based Sensing.

Su, T. A.; Bruemmer, K. J.; Chang, C. J. 
Curr. Opin. Biotechnol. 2019, 60, 198–204.

 

18. Effects of Copper Chelation on BRAFV600E Positive Colon Carcinoma Cells.

Baldari, S.; Di Rocco, G.; Heffern, M. C.; Su, T. A.; Chang, C. J.; Toietta, G.
Cancers 201911, 659.

 

17. A Modular Ionophore Platform for Liver-Directed Copper Supplementation in Cells and Animals.

Su, T. A.; Shihadih, D.; Cao, W.; Detomasi, T. C.; Heffern, M. C.; Stahl, A.; Chang, C. J.
J. Am. Chem. Soc. 2018, 140, 13764–74.
Featured in
JACS Spotlights.

 

16. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde from Folate Degradation in Living Mice.

Bruemmer, K. J.;† Green, O.;† Su, T. A.;† Shabat, D.; Chang, C. J. 
Angew. Chem. Int. Ed. 2018, 57, 7508–12.

 

15. Comprehensive Suppression of Single-Molecule Conductance Using Destructive σ–Interference.

Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C.
Nature 2018, 558, 415–419.
Featured in
EurekAlert, Nanowerk, ECN Mag, Xinhua, Nanotechnology Now, Phys.org

 

14. Large Variations in Single Molecule Conductance of Cyclic and Bicyclic Silanes.

Li, H.; Garner, M. H.; Shangguan, Z.; Chen, Y.; Zheng, Q.; Su, T. A.; Neupane, M.; Liu, T.; Steigerwald, M. L.; Ng, F.; Nuckolls, C.; Xiao, S.; Solomon, G. C.;
Venkataraman, L.
J. Am. Chem. Soc. 2018, 140, 15080–15088.

 

13. Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold.

Li, H.;† Su T. A.;† Camarasa-Gomez, M.; Hernangomez-Perez, D.; Henn, S. E.; Pokorny, V.; Caniglia, C. D.; Inkpen, M. S.; Korytar, R.; Steigerwald, M. L.; Nuckolls, C.; Evers, F.; Venkataraman, L.
Angew. Chem. Int. Ed. 2017, 129, 14145–48

 

12. Extreme Conductance Suppression in Molecular Siloxanes.

Li, H.;† Garner, M. H.† Su, T. A.† Jensen, A.; Inkpen, M. S.; Steigerwald, M. L.; Venkataraman, L.; Solomon, G. C.; Nuckolls, C.
J. Am. Chem. Soc. 2017, 139, 10212–15.

Featured in Scientific American, Chemistry World, Compound Interest.

 

11. Silane and Germane Molecular Electronics.

Su, T. A.; Li, H.; Klausen, R. S.; Kim, N. T.; Neupane, M.; Leighton, J. L.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. 
Acc. Chem. Res. 2017, 50, 1088–95.

 

10. Mechanism for Si-Si Bond Rupture in Single-Molecule Junctions.

Li, H.; Kim, N. T.; Su, T. A.; Steigerwald, M. L.; Nuckolls, C.; Darancet, P.; Leighton, J. L.; Venkataraman, L.
J. Am. Chem. Soc. 2016, 138, 16159–64.

Featured as JACS Cover

 

9. Tuning Conductance in π−σ−π Single-Molecule Wires.

Su, T. A.;† Li, H.;† Klausen, R. S.; Widawsky, J. R.; Batra, A.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C.
J. Am. Chem. Soc. 2016, 138, 7791–95.

 

8. Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance.

Li, H.; Garner, M. H.; Zhichun, S.; Zheng, Q.; Su, T. A.; Neupane, M.; Velian, A.; Xiao, S.; Steigerwald M. L.; Nuckolls, C.; Venkataraman, L.
Chem. Sci. 2016, 7, 5657–62.

 

7. Chemical Principles of Single-Molecule Electronics.

Su, T. A.; Neupane, M.; Steigerwald, M. L; Venkataraman, L.; Nuckolls, C. 
Nat. Rev. Mater. 2016, 16002, 1–15. 

 

6. Single-Molecule Conductance in Atomically Precise Germanium Wires.

Su, T. A.;† Li, H.;† Zhang, V.; Neupane, M.; Batra, A.; Klausen, R. S.; Kumar, B.; Steigerwald, M. L; Venkataraman, L.; Nuckolls, C.
J. Am. Chem. Soc. 2015, 137, 12400–05.

 

5. Electric Field Breakdown in Single-Molecule Junctions.

Li, H.; Su, T. A.; Zhang, V.; Steigerwald, M. C.; Nuckolls, C.; Venkataraman, L.
J. Am. Chem. Soc. 2015, 137, 5028–33. 

Featured in JACS Cover, JACS Spotlight

 

4. Stereoelectronic Switching in Single Molecule Junctions.

Su, T. A.; Li, H.; Steigerwald, M. L; Venkataraman, L.; Nuckolls, C.
Nat. Chem. 2015, 7, 215–20.

Featured in Nature Chemistry Editorial, Phys.org

 

3. Evaluating Atomic Components in Fluorene Wires.

Klausen, R. S.; Widawsky, J. R.; Su, T. A.; Li, H.; Chen, Q.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. 
Chem. Sci. 2014, 5, 1561–64.

 

2. Silicon Ring Strain Creates High Conductance Pathways in Single-Molecule Circuits.

Su, T. A.; Widawsky, J. R.; Li, H.; Klausen, R. S.; Leighton, J. L.;
Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C.
J. Am. Chem. Soc. 2013, 135, 18331–34. 

 

1. Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy.

Hoffman, D. P.; Lee, O. P.; Millstone, J. E.; Chen, M. S.; Su, T. A.; Creelman, M.; Fréchet, J. M. J.; Mathies, R. A.
J. Phys. Chem C. 2013, 117, 6990–97. 

Patents

2. Targeted Ionophore-Based Metal Delivery.

Chang, C. J.; Su, T. A.; Heffern, M. C. U.S. Patent WO US-2020-0113937, April 16, 2020.

1. Quantum Interference Based Single-Molecule Insulators.

Nuckolls, C.; Venkataraman, L.; Solomon, G. C.; Li, H.; Su, T. A.; Paley, D. W.; Ng, F.
U.S. Application No. 62/637,932, March 2, 2018.